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Since again no reference is given by HL, the reader 
might assume that no previous work has been done 
on the subject. On the contrary, several references 
must be quoted" the problem of the influence of the 
space-group symmetry in the quartet relationships 
was first treated in paper G3 from both the algebraic 
and the probabilistic points of view and the 
implementation of the theory in a procedure for phase 
solution was described by Busetta, Giacovazzo, Burla, 
Nunzi, Polidori & Viterbo (1980). 

(d) An effective implementation in the M U L T A N  
package of the results previously quoted for triplets 
has been described by Main (1985). The correct space- 
group weight for a triplet relationship is given by 

Wh, k : E-hEkEh- k ~ ¢~p,q exp [27ri(-hTp +kTq)] 
P,q 

where 

8p.q= 1 when h ( I -Rp)  = k ( I - R q )  

- 0 otherwise. 

The summations are over all the space-group sym- 
metry operations. Main's algorithm is clearly able to 
single out symmetry-consistent and -inconsistent trip- 
lets and to provide relative weights for their use in 
the phasing process. The last consideration introduces 
a final remark. Tables 1-3 in HL's paper are of limited 
use in direct-methods practice because: 

(1) the method used by HL to derive the list of 
equivalent or inconsistent triplets can fail to recognize 
some special combinations of indices producing 
multiple solutions for (2). The supplementary rules 
derivable by means of the algorithm described in the 

present paper and those concerning triplets with 
restricted phase values are only two examples, but 
others could exist in principle. 

(2) the use of large tables in routine programs is 
not advisable. Main's algorithm is an effective 
example of how relatively simple in practice the use 
of symmetry in such types of problems may be. 

Thanks are due to a referee for useful suggestions. 
This work was supported by the CNR project 

Metodologie Cristallografiche avanzate. 
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Abstract I. Introduction 
A method is described for producing tilings with 
various quasicrystallographic space groups, paying 
particular attention to the two-dimensional space 
groups p n m l  and p n l m  that can exist as distinct 
possibilities when the order of rotational symmetry 
n is a power of an odd prime number. 

Rokhsar, Wright and Mermin have discussed the 
definition and classification of lattices and space 
groups with crystallographically forbidden point- 
group symmetries, taking the view that such quasi- 
crystallographic concepts are best formulated in 
Fourier space. For any material whose diffraction 
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pattern consists of sharp Bragg-like peaks they define 
the lattice (Rokhsar, Mermin & Wright, 1987; 
Mermin, Rokhsar & Wright, 1987) to be the set of all 
integral linear combinations of wave vectors in the 
diffraction pattern, and they define space groups in 
terms of phase relations between density Fourier 
coefficients at lattice vectors related by point-group 
symmetries (see Bienenstock & Ewald, 1962; 
Rokhsar, Wright & Mermin, 1988a, b). 

When the lattice is thus defined in terms of the 
diffraction pattern, there is no need to insist upon a 
minimum distance between its points, and therefore 
no basis remains for the proof that a lattice can have 
only two-, three-, four- or sixfold symmetry axes. 
Only when its point group is crystallographic, 
however, is a k-space lattice dual to a direct lattice 
of real-space translations that can serve as a tem- 
plate to specify the atomic positions of a physical 
structure. When the point group is quasicrystallo- 
graphic, the role of the cells of the direct lattice 
can be played by the tiles of an aperiodic tiling, 
and a set of well separated point particles with 
a quasicrystallographic space group can be con- 
structed by placing them at the vertices of such a 
tiling. 

It is not always obvious how to produce a tiling 
with a given quasicrystallographic space group. We 
have recently described (Rabson, Ho & Mermin, 
1988) a construction that gives tilings with quasicrys- 
tallographic space groups p2kgm (the generalization 
of crystallographic p4gm), the only non-symmorphic 
two-dimensional quasicrystallographic space groups 
with 's tandard '  lattices (defined below). The other 
interesting class of two-dimensional quasicrystallo- 
graphic space groups with standard lattices are the 
pairs of symmorphic space groups pnml and pn 1 m 
(the generalizations of crystallographic p3ml  and 
p31 m) which are distinct if and only if the rotational 
order n is a power of an odd prime number. In this 
paper we describe how to produce quasicrystallo- 
graphic tilings with these space groups. In order to 
prove that our constructions do indeed have the space 
groups we claim, we develop methods that are more 
generally useful for producing quasicrystallographic 
tilings with a given space group or determining the 
space group of a given tiling. 

In § II we review the pertinent quasicrystallo- 
graphic generalizations of basic crystallographic con- 
cepts. In § III we prove a theorem that is useful in 
making a precise connection between the construction 
of a tiling and its space group. In § IV we apply this 
theorem to determining the space groups of the sym- 
morphic tilings of interest. Finally, in § V we display 
tilings produced by the method developed in § IV. 
Readers interested only in making a real-space com- 
parison between the quasicrystallographic analogs of 
the crystallographic space groups p3ml  and p31m 
are invited to go directly to § V. 

Although our discussion is in the context of two- 
dimensional lattices and tilings, many of our general 
points are clearly independent of dimension. Some 
of these points have been made in a different two- 
dimensional context by Niizeki (1988). Our work 
differs in that Niizeki focuses on point groups of 
tilings in real space without considering the relation 
between point group and lattice embodied in the 
Fourier-space concept of space group; we must also 
use a broader class of tilings than is usually con- 
sidered [as was also necessary for the p2kgm tilings 
of Rabson et al. (1988)] in order to produce tilings 
with the space group pn 1 m (or pn). 

II. Background 

We summarize in this section the features of space 
groups and tilings pertinent to what follows. Details 
and derivations can be found in Rokhsar et al. (1988b) 
for subsection A and in Rabson et al. (1988) for 
subsection B. 

A. Lattices and space groups 

We consider only the simplest two-dimensional 
lattice with n-fold symmetry: the set of all integral 
linear combinations of n vectors of equal length uni- 
formly separated by angles of 2~-/n. If k is in a lattice 
so is - k ,  so it suffices to consider even n. Mermin et 
al. (1987) showed that such lattices, which they call 
's tandard' ,  are the only lattices (up to scaling and 
rotation) when n is less than 46, but for larger n the 
lattice counting problem can be surprisingly compli- 
cated. The point group of the standard lattice L,, with 
n-fold symmetry is nmm. 

A material has lattice L, if its density Fourier 
coefficients are non-vanishing only on a denumerable 
set of wave vectors, all integral linear combinations 
of which yield L,. In the two-dimensional case, such 
a material is a quasicrystal if its macroscopic point 
group G is nmm or n (when ½n is even) or nmm, n, 
½nm or ½n (when ½n is odd).* If n is less than or equal 
to six, the quasicrystal is a crystal. 

The manifestation of point-group symmetry in 
Fourier space follows from the fact that two densities 
p and p' are macroscopically indistinguishable in all 
their translationally invariant properties if they are 
related by 

p'(k)=exp[27rix(k)]p(k) ,  (2.1) 

where X is linear (mod 1) on the latttice. Rokhsar et 
al. (1988b) characterize such densities as related by 
a 'gauge transformation'  and refer to X as a 'gauge 

* As in the crystallographic case, one does not consider point 
groups with lower rotational symmetry than these when the lattice 
is Ln because there are no physical grounds for the rotational 
symmetry of the lattice to be higher than the minimum compatible 
with that of the point group. 
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Table 1. The two-dimensional quasicrystallographic 
space groups with standard lattices 

From Rokhsar et al. (1988b). 

Point gro~ip 
rotation 

order 

n even 
b u t  n o t  2 k 

n = 2  ~: 

( k > l )  

rt = p k  

p odd prime 

n odd 
but not pk 

Lattice 
rotation 

o r d e r  

2n  

2n 

•7)ace 
groups 

prt, pnrnrn 

p/t ,  p n  rr/rr~ 

pn grn 

pit, im rn 1 

pnlrn 

prt, prim 

Symmor- 
phic ? 

yes 

yes 
n o  

yes  

yes 

Crys t al- 
lograph.zc 

ca3c 

n = 6  

n = 4  

I I = 3  

function'.* If g is in the point group G of a material 
then p(k) is macroscopically indistinguishable from 
p(gk).  Thus the point group G can be characterized 
in Fourier space as the set of all g for which p(k) is 
gauge equivalent to p(gk):  

p(gk)=exp[2~r ieg(k ) ]p (k ) .  (2.2) 

The particular gauge functions q~g associated in 
this way with the operations g of the point group G 
are called 'phase functions'. The classification of 
quasicrystals by space groups is based on their phase 
functions, in a manner specified in Rokhsar et al. 
(1988a, b). A space group is symmorphic if there is a 
single gauge transformation that simultaneously 
reduces all the phase functions to zero. The complete 
list of two-dimensional quasicrystallographic space 
groups with standard lattices is shown in Table 1. 

B. Grids and tilings 

In the grid method for producing tilings (see, for 
example, de Bruijn, 1981; G/ihler & Rh~ner, 1986), 
we are given D wave vectors k {)= 27rn( ) / L ,  tiling 
vectors a {~), and grid shifts 0 ---f < 1. Each wave vector 
determines a family of lines normal to the unit vector 
n {°, separated by L~, and displaced from the origin 
(in the direction - k  C') by the amount fL~. Each 
intersection in the grid of D families determines a 
tile whose edges are just the tiling vectors a C° associ- 
ated with the families of the lines meeting at that 
intersection (Fig. 1). 

We follow Ho's version of the grid method (Ho, 
1986; Rabson et al., 1988) in which the grid wave 
vectors and tiling vectors are constrained only by the 
condition 

D - I  

y~ _(i)1.(o = 27r6~,~. (2.3) ¢At/x I~,u 

i = 0  

With this condition one can extend the D grid and 
tiling vectors to two sets of D-dimensional vectors 
(a ( ' ,  b (i}) and (k (°, q(i)) that satisfy the condition of 
mutual orthonormality,* 

a(O. k(j)+ b(~). q{S) = 2w6o. (2.4) 

If the density p(r) is a sum of delta functions at 
the vertices of the tiling, then its Fourier transform 
p(k) is non-vanishing only on the lattice of integral 
linear combinations of the k u). The Fourier 
coefficients are given by 

p(k) = ~ exp (iq.  f)q~(q) (2.5) 

where the sum is over all q = ~  n~q C° such that 
nik {i)= k, the 'grid shift vector' f is 

f=Y~fh  ~', (2.6) 

and (although this will be of no importance in what 
follows) 

~0(q) = v- '  j" exp (iq.  r), (2.7) 
A 

where A is the (D-2) -d imens iona l  'acceptance 
region' given by the set of all Y~ hib C~) with 0-< h~ < 1, 
and v is the volume of the primitive cell of the 
D-dimensional lattice generated primitively by the 
(a(/), b(i)). 

III. Gauge equivalence and grid shifts 

In the cases that interest us the result of applying to 
the tiling any operation g in the point group of the 
lattice can also be produced by appropriate grid shifts. 
In determining whether p(gk)  and p(k) are gauge 
equivalent we shall use a simple condition for gauge 

* It is this extension to D dimensions that underlies the inter- 
pretation of tilings as projections of higher-dimensional periodic 
structures, but we make no use of this interpretation here. 

a121 
i l  

2 " HII) a l ~ N f  

j ._ A 

C J  D C 
/ 

D 

* If  the densities are sums of 6 functions at the vertices of a 
tiling, then gauge equivalence of the densities is the same as 
membership in the same 'local isomorphism class' for the tilings. 
See G~ihler (1986). 

Fig. 1. The intersection of two grid lines from families 1 and 2 
determines four grid cells (left); the labeled grid cells correspond 
to the labeled vertices of a tile (right) whose sides are given by 
the vectors a (~) and a t2) (top), 
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equivalence of two tilings that differ only in their grid 
shifts. 

Suppose then that two tilings are produced by the 
same grid wave vectors k ~° and tiling vectors a ~°, 
but with grid shifts that differ by Aft. The grid and 
tiling vectors are restricted only by the orthonormality 
condition (2.3) and the additional requirement that 
no two tiling vectors should be the same (or differ 
only in sign). We prove in this section that two such 
tilings are gauge equivalent if and only if for every 
integral linear combination of grid wave vectors that 
vanishes the corresponding integral linear combina- 
tions of grid shifts differ by an integer; i.e. 

~, niAfi =-- 0 whenever ~, nik (i) = 0 (3.1) 

(where ' = '  means equality modulo unity).* 
According to (2.5) the Fourier coefficients for the 

two tilings are given by 

p(k) = ~ exp ( iq .  f)~p(q), 

p'(k)=Y~ e x p ( i q . f )  e x p ( i q .  Af)q~(q). (3.2) 

Since 

Af=~,  Af~b <'), q = E  n,q <'), (3.3) 

it follows from the orthonormality relations (2.4) that 

q.  A f  = 2~r ~ niAf~ - k .  ~ Af~a <~). (3.4) 

For given k, the second term on the right in (3.4) is 
explicitly independent  of q, and since the sum in (3.2) 
is over only those q = ~ niq ~° such that ~ nik ~°= k, 
the first term on the fight in (3.4) will also be indepen- 
dent of q (mod 1) if (3.1) holds. Consequently (3.1) 
implies that p'(k) and p(k) differ only by a phase 
factor exp [27fix(k)]. The linearity (mod 1) of x(k)  
follows directly from the form (3.4) of that phase 
factor. Thus (3.1) implies gauge invariance. 

The converse result, that gauge equivalence implies 
(3.1), is less trivial, and is essential for establishing 
that the space-group assignments made below have 
in fact the largest possible point groups for the 
specified grid shifts. Suppose then that the two tilings 
in (3.2) are gauge equivalent, so that (2.1) holds with 
x(k)  linear (rood 1). If we shift the grid giving the 
tiling with density p by the grid shift vector 

A t ° =  E x(k(i)) b(i), (3.5) 

then it follows from the orthonormality relations (2.4) 
that the Fourier transform of the shifted tiling, 

p"(k) = E exp ( iq .  f) exp ( iq .  Af°)q~(q), (3.6) 

is the same as that of the tiling with density p'  given 
in (2.1) except for the additional phase factor 
exp ( ik .  ro) where 

r0 = - ~  x(k~i))a ~i). (3.7) 

* This result, stated in terms of local isomorphism class rather 
than gauge equivalence, is proved by Niizeki (1988) in the special 
case when the grid and tiling vectors are a symmetric star. 

This extra phase simply expresses a translation of the 
whole tiling through to. Thus shifting the p tiling by 
Af ° gives the same tiling as shifting it by Af, except 
for a uniform translation in tiling space. In the Appen- 
dix, however, we prove when all the tiling vectors a ~i) 
are distinct that if two grid shifts yield the same 
aperiodic tiling (except for a translation in tiling 
space) then the grid shifts can differ only by a uniform 
translation in grid space: 

Af i=Af°+c.k~i )=x(k~i ) )+c .kCi )  (3.8) 

for some constant vector c. Since the gauge function 
X is linear in k (mod unity), (3.1) follows directly 
from (3.8). 

IV. Some tilings and their space groups 

We now apply the criterion of § I I I  to the construction 
of tilings with the space groups pnm 1 and pn 1 m that 
exist as distinct possibilities when n = pk for any odd 
prime p.* (We also extract as a byproduct  tilings with 
only pn symmetry.) We first consider the usual case 
where there is just a single symmetric star of n grid 
vectors, showing that such a grid can yield the space 
group pnml  (or p[2n]mm) but not p n l m  (or pn). 
We subdivide our discussion into two cases, depend- 
ing on whether n is prime or a non-trivial power of 
a prime. We then examine the simplest extension of 
the single symmetric star capable of yielding pnl  m 
(or pn) as well as pnml  (or p[2n]mm).  

A. One star 

The grid wave vectors constitute a single star of 
vectors of equal length uniformly separated by angles 
of 2~r/n. We take the tiling vectors to be parallel to 
the grid wave vectors, all with the same length, deter- 
mined by the orthonormality condition (2.3). We shall 
assume here, and for the two-star construction 
described below, that the lattice is the standard lattice 
LEn, consisting of all integral linear combinations of 
the n grid wave vectors. This is certainly the case for 
n = 5 ,  7, 9, 11, 13, 17, 19, 25 and 27, since these are 
all the values of n of the f o r m  pk for which there are 
no non-standard lattices with 2n-fold symmetry 
(Mermin et al., 1987). A sufficient condition for the 
lattice to be standard, which can be checked numeri- 
cally in any given case, is that the density Fourier 
coefficient should be non-zero at a grid wave vector 
(a primary grid wave vector in the two-star construc- 
tion). We would be surprised if constructions as 

* When n is not a prime power the orientation of a star of wave 
vectors whose integral linear combinations give the entire lattice 
is not unique, and there is no way to distinguish between the two 
families of mirrorings that distinguish pnml (mirrors along the 
vectors of such a generating star) from pnlm (mirrors perpen- 
dicular to the vectors of a generating star). When n is a prime 
power, however, the orientation of a generating star is unique and 
the distinction can be made (Rokhsar et al., 1988b). 



542 SPACE GROUPS OF Q U A S I C R Y S T A L L O G R A P H I C  TILINGS 

simple as those we describe could yield tilings with 
non-standard lattices, but we have not found a general 
argument that the lattices must necessarily be stan- 
dard for general n. 

When n is odd the point group of the lattice is 
[2n] mm. Point-group operations can permute and /o r  
change the sign of the grid wave vectors. The macro- 
scopic symmetry group G of the tiling can be lower 
than [2n]mm only if the grid shifts f are less sym- 
metric. The effect of a point-group operation on the 
tiling is entirely produced by the corresponding per- 
mutations or changes of sign of those grid shifts. 

The condition for g to be in the point group G of 
the tiling is that p(gk)  should be gauge equivalent to 
p(k). When n is prime, there is only one linear combi- 
nation of grid wave vectors that vanishes, 

n - I  

Z k(i)= 0, (4.1) 
i = 0  

so the condition (3.1) for gauge equivalence reduces 
to a single condition on the change of grid shifts that 
relates p(gk)  to p(k), 

n - I  

E zaf~ - O. (4.2) 
i = 0  

When g is a rotation through a multiple of 2~r/n 
or a mirroring in a line containing one of the grid 
wave vectors (the case giving pnml) then g simply 
permutes the grid shifts, (4.2) is always satisfied, and 
the space group is at least pnm 1, whatever the choice 
of grid shifts. 

When g is a rotation through an odd multiple of 
27r/2n or a mirroring in a line perpendicular to one 
of the grid wave vectors (the case giving pn 1 m) then 
g changes the sign of the grid shifts as well as permut- 
ing them, so that (4.2) is satisfied only if 

n - I  

E f~ =j /2 ,  j an integer. (4.3) 
i = 0  

Since the space group is always at least pnm 1, when 
(4.3) holds the space group becomes p[2n]mrn. 

Thus when n is an odd prime number, a single 
symmetric n-fold star of grid vectors will give a quasi- 
crystallographic tiling with space group prim 1 what- 
ever the choice of grid shifts unless they satisfy (4.3), 
in which case the space group is raised to p[2n]mm. 
Tilings with the space groups pnl m and pn cannot 
be produced by a single star of grid vectors. 

Similar conelusions hold when n is a non-trivial 
power of an odd prime. If n = pk with p an odd prime, 
then any sum of grid wave vectors that vanishes can 
be expressed as an integral liner combination of the 
q=pk-1 linearly independent relations among the 
grid wave vectors* that express the vanishing of the 

* The number of independent wave vectors is the Euler function 
q~(n) [see, for example, Lang (1984), pp. 313-314], which is 
(p -  1)p k-1 when n = p  k. 

sum over q distinct p-fold stars" 

p - I  

~, k Cqi+k) = 0 ,  k = 0 , . . . ,  q -  1. (4.4) 
i = 0  

There are thus q conditions on the change of grid 
shifts that relates p(gk)  to p(k) if g is to be in the 
point group of the tiling: 

p - I  

E kfq,+k --= O, k = 0 , . . . , q - 1 .  (4.5) 
i = 0  

When g is a rotation through a multiple of 27r/n or 
a mirroring in a line containing one of the grid wave 
vectors (the case giving prim 1) then its effect on the 
shifts is simply a permutation of the different p-fold 
stars, and (4.5) requires the sum of the grid shifts 
associated with each p-fold star to be the same 
(modulo an integer): 

p - 1  p - I  

fqi+k =- ~. fqi, k = 0 , . . . ,  q -  1. (4.6) 
i = 0  i = 0  

Unless (4.6) holds, the point group G is not even n 
and the tiling is not quasicrystallographic, the lattice 
having a higher symmetry than required by the point 
group (see footnote * on p. 539). When (4.6) does 
hold the space group is at least pnm 1. 

When g is a rotation through an odd multiple of 
2~r/2n or a mirroring in a line perpendicular to a 
grid wave vector (the case giving pn lm)  then g 
changes the signs of the p-fold stars as well as permut- 
ing them, so that to satisfy (4.5), condition (4.6) 
requires that 

p - I  

E fq ,+k- j /2 ,  
i = 0  

k = 0 , . . . , q - 1 ,  j an integer independent of k. 

(4.7) 

Thus when n is a non-trivial power of an odd prime 
number, a single symmetric n-fold star of grid vectors 
will give a quasicrystallographic tiling only if the sums 
of the grid shifts associated with each p-fold substar 
are the same. The space group of the quasicrystallo- 
graphic tiling will then be pnml unless these grid 
shift sums are all integral or all half integral, in which 
case the space group is p[2n]mm. Tilings with the 
space groups pn 1 m and pn cannot result. 

B. More than one star 

To get tilings with the space groups pn 1 m and pn 
we must increase the set of grid wave vectors to allow 
for new grid shifts that break the symmetry in such 
a way as to reduce p[2n]mm to pnlm, or pnml to 
pn. We can do this without changing the lattice* 
or reducing its symmetry by introducing additional 

* This assertion, though highly plausible for general n, is subject 
to the caveat given at the beginning of § IV A. 
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n-fold stars of wave vectors that are appropriately 
chosen integral linear combinations of vectors from 
the original set (which we now refer to as the primary 
star). We can continue to satisfy the orthonormality 
condition (2.3) by associating with the new stars of 
grid vectors new n-fold stars of tiling vectors parallel 
to those grid vectors. We can get a tiling of rhombi 
by taking all tiling vectors in all stars to have the 
same length, determining that length from the 
orthonormality condition (2.3). 

In finding the grid shifts for the new non-primary 
stars, it is useful to work in a gauge in which the grid 
shifts for the primary star have a particularly simple 
form. As already noted, when n = pk the wave vectors 
within the primary star satisfy precisely q=pk-I 
independent linear relations with integral 
coefficients-namely the conditions (4.4) that the 
sums of the wave vectors in each of the q different 
p-fold substars should vanish. When additional stars 
are present, a complete (in general overcomplete) set 
of linear relations is given by adding to the relations 
(4.4) the relations 

~(i) = ~ nukO) (4.8) 

that express each new grid wave vector as an integral 
linear combination of grid wave vectors from the 
primary star. 

Since two tilings are gauge equivalent if and only 
if every integral linear relation satisfied by the grid 
wave vectors is also satisfied by the differences in the 
grid shifts relating the tilings, it follows from the 
relation (4.4) that, given a particular tiling, a 
necessary condition for a second tiling to be gauge 
equivalent is that the primary grid shifts within each 
substar should have the same sum for each of the 
tilings. If this condition is met, then there will indeed 
be a set of secondary grid shifts for the second tiling 
that make it gauge equivalent to the first: namely the 
(unique) set determined by the additional linear rela- 
tions 

Aj~ =-- ~ n#Afj. (4.9) 

We can therefore pick a gauge in which the primary 
grid shifts are the same within each primary substar. 
The condition (4.6) for the tiling to be quasicrystal 
with n-fold symmetry then reduces to the condition 
that the shifts for primary substars can differ only by 
integral multiples of 1/p. Since a change of every shift 
in a primary substar by 1/p is itself a gauge transfor- 
mation, we can pick a gauge in which the integer is 
zero, and the grid shifts are then the same within the 
entire primary star. We take this to be the standard 
form for the tiling. 

The space group of a tiling produced by a single 
star in standard form will then be pnm l unless the 
common value f of the grid shifts is an integral 
multiple of 1/2p [of. (4.7)]. When f = j / 2 p  the space 
group is p[2n]mm. 

If, however, there are grid wave vectors in addition 
to those in the primary star, then the condition for g 
to be in the point group G is augmented by the 
condition that the changes in grid shifts produced by 
g should satisfy (4.9). Using the standard form, fj =f ,  
for the grid shifts associated with the k °), we conclude 
from (4.9) that if g is an operation that permutes the 
k °) (a rotation through a multiple of 27r/n or a 
mirroring in one of the k °~) then 

A~----0. (4.10) 

Since the 27r/n rotation must be in G we immediately 
conclude that the grid shifts must also be constant in 
every non-primary star: 

. ~ - - f  (4.11) 

If g is a mirroring in one of the k (i) then (4.10) 
requires that the value of f in a secondary star must 
be the same as its value in the mirror image of that 
star. By violating this condition we can produce tilings 
without that mirror symmetry. The simplest way to 
do this is with one secondary star that goes into its 
negative under the mirroring, so that Af~ = 2;?. This 
can be done by taking (4.8) to have the particular 
form (see Fig. 2) 

~ ( i )  : k ( i + l )  _ k(O (4.12) 

Thus for the mirror to remain in G we must have 

2 ~ - 0 :  (4.13) 

the grid shift for the secondary star must be equivalent 
to zero or to ½. 

Therefore if the primary grid shift f is not an 
integral multiple of 1/2p (so that the primary shifts 
satisfy the condition for the space group to be pnm 1 
but not p[2n]mm) then unless the secondary grid 
shift f is an integer or half integer the space group 
of the tiling produced by the total grid is reduced to 
pn. If the primary grid shift is a multiple of 1/2p (so 
that the primary grid shifts do satisfy the condition 

k¢i) 

Fig. 2. A secondary star vector ~(i)=kt~+~)_k(O. The secondary 
star is invariant under mirrorings perpendicular to primary star 
vectors and vice versa. 
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Table 2. Quasicrystallographic space groups for 
different choices of the primary and secondary grid shifts 

when n is a power of an odd prime p 

All families in the primary grid have the same shift f ;  all families 
in the secondary grid have the same shift f ;  l = 0 or 1; j = 0, 1 . . . . .  
or 2p - 1. 

7 = el2 

7 # e/2 

f = j /2p  f ~ j /2p  

p[2n]mra pnml  

pn 1 m pn 

for the space group to be p[2n]mm), then unless the 
secondary grid shift f is an integer or half integer the 
secondary grid reduces the space group of the tiling 
from p[2n]mm to pnlm. For if g is a mirroring 
perpendicular to one of the primary star wave vectors, 
then g leaves the secondary star (4.12) invariant, and 
(4.9), which here reduces to 

Af~=--Af+~-Af, (4.14) 

is automatically satisfied: 

0---- 2 f - 2 f  (4.15) 

Setting .~ ~ I/2 therefore eliminates only the mirror 
along the primary star. We therefore have the four 
cases summarized in Table 2. 

V. Applications: some tilings 

We illustrate some of the results of these construc- 
tions, first showing what the two-star construction 

Fig. 3. A p31m tiling in standard form with primary shifts 0.5 and 
secondary shifts 0.1. A possible unit-cell packing is outlined. 
Mirrors are along nearest-neighbor lines. 

gives in the crystallographic case of threefold sym- 
metry. The argument in the Appendix breaks down 
when the tiling is crystallographic, but for the grid 
shifts given in the figure captions, the procedure con- 
tinues to produce the required space group in the 
crystallographic case, as can be verified by direct 
inspection of the tiling. Fig. 3 shows the result of 
applying the pn lm procedure when n = 3, where the 
outlined primitive cells reveal mirrors along lines 
joining nearest-neighboring cells, as is required in 
real space for periodic structures with the space group 
p31 m. Fig. 4 does the same for p3m 1, the real-space 
mirrors now being along the lines joining next- 
nearest-neighboring cells. Fig. 5 shows a p3 tiling, 
with no mirror lines. 

We next show some quasicrystallographic tilings, 
first from the familiar single-star construction, then 

Fig. 4. A p 3 m l  tiling with primary shifts 0.1 and secondary shifts 
0.5. Mirrors are along next-nearest-neighbor lines. 

Fig. 5. A p3 tiling with primary shifts 0.1 and secondary shifts 
0.35. There are no mirrors. 
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from the two-star construct ion necessary to produce  
space groups p5 and  p51 m. The Penrose til ing of  Fig. 
6 comes f rom a star with Y',f~ = 0; we have put  it in 
s tandard form (all shifts equal)  in order to show a 
point  of  perfect  fivefold symmetry.  The space g r o u p  
is plomm. The grid giving Fig. 7 has )-', f~ = 0.75 and  
so the til ing has space group p5ml. Any choice 
(mod 1) other than 0 or ½ for ~f~ yields another  p5ml 
tiling. To produce tilings with space groups p51m 

and p5 we require two stars. Fig. 8 shows a p51m 
tiling, while  Fig. 9 has a tiling with space group p5. 
Again, all the tilings are in s tandard form. For com- 
parison, we show in Figs. 10 and 11 plOmm and 
p5m 1 tilings produced by the same two-star construc- 
tion that gave Figs. 8 and 9. 

We thank Ying-Hong Li and David Wright for 
discussions. TLH thanks  P. Steinhardt  for sponsor ing 
a three-month visit to the Physics Depar tment  of  the 
Universi ty of  Pennsylvania  in the winter  of  1988 
through NSFGrantOMR85 19059 wherepa ofthis 

iI !i I I 
F'g. 6. The Penrose (plOmm) tiling with shifts all equal to 0-4; 

the point of perfect fivefold symmetry here and in Figs. 7-11 is 
near the upper right-hand comer. 

Fig and 

Fig. 7. A one-star tiling (p5ml) with shifts all equal to 0.15. 
Although the space group is determined unambiguously by the 
Fourier coefficients of the tiling, in contrast to the crystallo- 
graphic case there is no obvious connection between the real- 
space structure and such distinctions as that between p5ml and Fig. 9. A two-star tiling (p5) with primary shifts of 0-13 and 
p51m. secondary shifts of 0.32. 
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Fig. 1 d 

f 

Fig. 11. A two-star tiling (p5ml )  with primary shifts of 0.13 and 
secondary shifts of 0-5. 

I 2 1 2 1 

1 2 1 2 I 

/)\ /o \ / 0  
Fig. 12. Portions of corresponding family 0 lines in two grids that 

yield identical tilings. The numbers label the families of intersect- 
ing lines; the labels P, Q, R and S are as in the text of the 
Appendix. 

work was done. He also acknowledges the support 
of NSF Grant  DMR86-13368, which sponsored a visit 
to Cornell, NSF Grant DMR87-17574 at the Ohio 
State University, and an Alfred P. Sloan Fellowship 
award. DAR was supported in part by an Office of 
Naval Research graduate fellowship. NDM was sup- 
ported in part by the National Science Foundation 
through the Cornell Materials Science Center, Grant 
DMR85-16616-A01. 

A P P E N D I X  

We have two grids and their associated tilings, pro- 
duced by the same sets of wave vectors and tiling 
vectors, but with possibly different grid shifts. We 
require all the tiling vectors to be different (and no 
two equal and opposite) so that a tile of a given shape 
comes from a grid intersection associated with a 
unique pair of wave vectors (but we do not require 
the grid wave vectors all to be different). We prove 
that if the tilings are aperiodic and the same (except 
perhaps for a translation in tiling space) then the two 
grids must be the same except, perhaps, for a transla- 
tion in grid space; i.e. the grid shifts differ by 

A f  = c . k  {i) (A.1) 

for some constant vector c. The proof is as follows. 
If there are only two grid vectors then the tiling is 

periodic, so there must be at least three. Because the 
tiling is aperiodic, it is possible to find three families 
of lines, perpendicular to k C°~, k ~1~ and k C2~, such that 
the spacing between intersections of family 1 with a 
family 0 line is incommensurate with the spacing 
between intersections of family 2 with the family 0 
line. We show first that the subgrids of the two grids 
associated with these three families differ at most by 
a translation; i.e. that the position of the family of 
lines 2 with respect to families 0 and 1 must be the 
same in both grids. 

Because the two tilings differ by at most a transla- 
tion, we can find lines in family 0, one from each 
grid, that have identical sequences of intersections 
with all the lines from families 1 and 2. Let P and Q 
be 1-intersections on the two lines about which the 
sequences of 1- and 2-intersections are identical (Fig. 
12). Shift one of the grids by a translation that brings 
P and Q into coincidence. Then the families of lines 
0 and 1 certainly coincide. Supppose the families 2 
did not. Let R be the 2-intersection nearest to P in 
one grid, and let S be the 2-intersection nearest to P 
(in the same direction as R) in the other. Let d be 
the non-zero distance between R and S. There can 
be no 1-intersection between R and S, for if there 
were then one of the grids would have one more 
1-intersection between P and the first 2-intersection 
than the other had. Continuing away from P in the 
same direction, ".his must also be true of the next pair 
of 2-intersections, and therefore the next after that, 
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and thus it must be true of all subsequent pairs. The 
same must also be true in the other direction from P. 
We conclude that the line we are considering must 
contain a set of intervals of length d with the periodic- 
ity of the 2-intersections, inside of which no 1-inter- 
section can lie. This, however, is impossible because 
the period of the 1-intersections is incommensurate 
with the period of the 2-intersections. Thus d must 
be zero, the 2-intersections must indeed coincide, and 
the position of family 2 is fixed with respect to families 
0 and 1. 

The rest of the proof is simple: any other family 3 
that is not parallel to family 0 must have a spacing 
between intersections along a line in family 0 that is 
incommensurate with the spacings of either family 1 
or of family 2 on family 0 (since if it were commensur- 
ate with both then families 1 and 2 would have com- 
mensurate slSa.cings). Therefore, by repeating the first 
part of the argument we can conclude that the position 
of family 3 is fixed with respect to either family 1 or 
family 2. In this way the positions of all families are 
fixed except for those given by families parallel to 
family 0. But these can now be fixed, in the same 

way, with respect to families not parallel to 0. Thus 
the grids are indeed identical except for a possible 
translation. 
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Abstract 

A geometrical 'WPV' notation for the 371 crystallo- 
graphic space groups describing mono-incom- 
mensurate phases of physical space in four- 
dimensional space is proposed, which completes the 
geometrical 'WPV' notation for all crystallographic 
point symmetry groups. The WPV symbols are given 
for the 76 mono-incommensurate arithmetic classes, 
or Z classes. Definitions and some examples of Z 
classes, Bravais types, Bravais flocks, Q classes (or 
geometrical classes or point groups), holohedries and 
crystal families both in the physical space and the 
superspace [E 4 a r e  given. 

Introduction 

In a previous paper (Weigel, Phan & Veysseyre, 1987) 
we have given a simple geometric symbol, the 'WPV' 

0108-7673/89/080547-11 $03.00 

symbol, for each of the 227 crystallographic point 
symmetry groups (PSGs) of the four-dimensional 
space IF 4. In this article we propose a WPV symbol 
for 371 crystallographic symmetry space groups 
(SSGs) belonging to the seven crystal systems of [E 4 

describing the mono-incommensurate phases of the 
physical space. 

A symmetry space group of the Euclidean space 
l~n is the group of all the crystallographic symmetry 
operations (SOs), or isometries, mapping one crystal 
structure onto itself. A space group is always an 
infinite group because a crystal structure has infinitely 
many symmetry translations. The set of all the transla- 
tion vectors of IE n mapping a crystal structure onto 
itself is the lattice of this strucU:,~. A lattice of IE" is 
defined by n linearly independent vectors ei (i varying 
from 1 to n). So it depends, in the most general case, 
on n parameters of length and n ( n -  1)/2 parameters 
of angle. 
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